If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-64x+49=0
a = 16; b = -64; c = +49;
Δ = b2-4ac
Δ = -642-4·16·49
Δ = 960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{960}=\sqrt{64*15}=\sqrt{64}*\sqrt{15}=8\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-8\sqrt{15}}{2*16}=\frac{64-8\sqrt{15}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+8\sqrt{15}}{2*16}=\frac{64+8\sqrt{15}}{32} $
| 2(x-7)^5+3=67 | | 22-f/5=-15 | | 3(1t+1)=18 | | 4a+3(3-a)=2(a+1)-(2a-1) | | 9n-4=-11n | | 7/11=18/x+1 | | -9+x=x-1 | | 8x+20=1+3x-1 | | 12=(7-c)4 | | -2(2x+7)=-38 | | 7(-9a-4)=-2a-10(1+6a) | | 2/3n+5=15 | | 6-2(x-1)=-16 | | 17.5+14.2+14.2x=49.2 | | -2=-(1+4m)-2m | | 4(-2x+5)=28 | | 5(2d+8)=7(2d+) | | 6a-20+a(-3)=50 | | 7x2+21x-28=0 | | (9y÷14)+(3÷7)=(9÷14) | | C=x^2-5x+30 | | –6x–x+10=15–7x–5 | | 5(3x-2)+12-6x=-43 | | 5=x+4=8 | | 5(2x+8)^2=-80 | | 8x^+40x^2=O | | 3.5/h=-2 | | 5x+12x-2x=15-10 | | 3(3x+5)-12x-4=5 | | 12x+28x+15=0 | | -1x+6=x+14 | | 0.35x200=70 |